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Aim and philosophy:

Aim: To present an algebraic framework for studying braces
and rings on equal footing.
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‘Identity-free’ framework
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Herds (or heaps or torsors)
H. Prüfer (1924), R. Baer (1929)

Definition
A herd (or heap or torsor) is a nonempty set A together with a
ternary operation

[−,−,−] : A× A× A→ A,

such that for all ai ∈ A, i = 1, . . . ,5,
I

[[a1,a2,a3] ,a4,a5] = [a1,a2, [a3,a4,a5]] ,

I

[a1,a2,a2] = a1 = [a2,a2,a1] .

A herd (A, [−,−,−]) is said to be abelian if

[a,b, c] = [c,b,a], for all a,b, c ∈ A.
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Herds are in ‘1-1’ correspondence with groups

I If (A, �) is a (abelian) group, then A is a (abelian) herd with
operation

[a,b, c]� = a � b� � c.

Notation: H(A, �).
I Let (A, [−,−,−]) be a (abelian) herd. For all e ∈ A,

a �e b := [a,e,b],

makes A into (abelian) group (with identity e and the
inverse mapping a 7→ [e,a,e]). Notation: G(A,e).

I Note:
I G(A,e) ∼= G(A, f );
I H ◦ G = id, i.e., irrespective of e: [a,b, c]�e = [a,b, c].
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Herds are ‘groups without specified identity’
I There if a forgetful functor

Grp −→ Set∗.

I Morphisms from (A, [−,−,−]) to (B, [−,−,−]) are
functions f : A→ B respecting ternary operations:

f ([a,b, c]) = [f (a), f (b), f (c)].

I There is a forgetful functor

Hrd −→ Set,

but not to the category of based sets.
I Worth noting:

Aut(A, [−,−,−]�) = Hol(A, �).
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Constructions on herds

I Quotient herds: A subherd S of A (i.e., [s, s′, s′′] ∈ S, for all
s, s′, s′′ ∈ S) defines an equivalence relation ∼S on A:

a ∼S b ≡ ∃s ∈ S, [a,b, s] ∈ S
≡ ∀s ∈ S, [a,b, s] ∈ S.

If A is abelian (or S is normal), A/S := A/ ∼S is a herd.
I Free herds: X - a set.

I W (X ) reduced (no consecutive identical letters) words in X
of odd length.

I Operation: [w1,w2,w3] = w1w t
2w3 followed by pruning.

Altogether: a free herd on X . Can be abelianised to give
A(X ).



Constructions on herds

I Quotient herds: A subherd S of A (i.e., [s, s′, s′′] ∈ S, for all
s, s′, s′′ ∈ S) defines an equivalence relation ∼S on A:

a ∼S b ≡ ∃s ∈ S, [a,b, s] ∈ S
≡ ∀s ∈ S, [a,b, s] ∈ S.

If A is abelian (or S is normal), A/S := A/ ∼S is a herd.
I Free herds: X - a set.

I W (X ) reduced (no consecutive identical letters) words in X
of odd length.

I Operation: [w1,w2,w3] = w1w t
2w3 followed by pruning.

Altogether: a free herd on X . Can be abelianised to give
A(X ).



Constructions on herds (cd)

I Coproduct:
I A, B – abelian herds.
I A t B is a free abelian herd A(A t B) modulo relations

determined by [−−−]A and [−−−]B.
I

A t B = H (G(A,eA)⊕ G(B,eB)⊕ Z) .

I Kernels: A kernel of a herd morphism f : A→ B is defined
as

kere f = f−1(e) = {a ∈ A | f (a) = e}, e ∈ Im(f ) ⊆ B.

I kere f is a (normal) sub-herd of A.
I Different choices of e lead to isomorphic sub-herds.
I ∼kere f is the same as the kernel relation,

a ∼kere f b iff f (a) = f (b).
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Trusses

I A left skew truss is a herd (A, [−,−,−]) together with an
associative operation · that left distributes over [−,−,−],
i.e.,

a · [b, c,d ] = [a · b,a · c,a · d ].

I If (A, [−,−,−]) is abelian, then we have a left truss.
I Right (skew) trusses are defined similarly.
I A truss is a triple (A, [−,−,−], ·) that is both left and right

truss.
I A morphism of (left/right skew) trusses is a function

preserving both the ternary and binary operations.



Trusses: between braces and (near-)rings

Let (A, [−,−,−], ·) be a left skew truss.

I Assume that (A, ·) is a group with a neutral element e.
Then (A, �e, ·) is a left skew brace, i.e.

a · (b �e c) = (a · b) �e a�e �e (a · c).

I Assume that e ∈ A is such that

a · e = e, for all a ∈ A.

Then (A, �e, ·) is a left near-ring, i.e.

a · (b �e c) = (a · b) �e (a · c).
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Trusses: generalised distributivity
Let (A, �) be a group and (A, ·) be a semigroup. TFAE:

I There exists σ : A→ A, such that

a · (b � c) = (a · b) � σ(a)� � (a · c).

I There exists λ : A× A→ A, such that,

a · (b � c) = (a · b) � λ(a, c).

I There exists µ : A× A→ A, such that

a · (b � c) = µ(a,b) � (a · c).

I There exist κ, κ̂ : A× A→ A, such that

a · (b � c) = κ(a,b) � κ̂(a, c).

I (A, [−,−,−]�, ·) is a left skew truss.



Trusses from split-exact sequences of groups

I Let (A, �) be a middle term of a split-exact sequence of
groups

1 // G // A
α // H
β
oo // 1

I Let · be an operation on A defined as

a · b = a � β(α(b)) or a · b = β(α(a)) � b.

I Then (A, [−,−,−]�, ·) is a left skew truss.



The endomorphism truss

I Let (A, [−,−,−]) be an abelian herd.
I Set E(A) := End(A, [−,−,−]).
I E(A) is an abelian herd with inherited operation

[f ,g,h](a) = [f (a),g(a),h(a)].

I E(A) together with [−,−,−] and composition ◦ is a truss.



Notes on the endomorphism truss:

I Choosing the group structure f �id g on E(A), we obtain a
two-sided brace-type distributive law between �id and ◦.

I Fix e ∈ A, and let ε : A→ A, be given by ε : a 7→ e. Then
ε ∈ E(A), and choosing the group structure f �ε g on E(A)
we get a ring (E(A), �ε, ◦).

I The left multiplication map

` : A→ E(A), a 7→ [b 7→ a · b],

is a morphism of trusses.



Truss structures on (Z, [−−−]+):
Theorem

(1) Non-commutative truss structures, ,

m · n = m or m · n = n, ∀m,n ∈ Z.

(2) Commutative truss structures are in 1-1 correspondence
with elements of

I2(Z) = {e ∈ M2(Z) | e2 = e, Tr e = 1}.

(3) Isomorphism classes of truss structures in (2) are in 1-1
correspondence with orbits of the action of

D∞ =

{(
1 0
k ±1

)
| k ∈ Z

}
.

on I2(Z).
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Trusses and ring theory: ideals, quotients, paragons

Many techniques and constructions familiar in ring theory can
be applied to trusses but not necessarily in a
straightforward way.

I An ideal of (A, [−,−,−], ·) is a sub-herd X such that,

a · x , x · a ∈ X , for all x ∈ X ,a ∈ A.

I The quotient A/X := A/ ∼X is a truss with operations

[a,b, c] = [a,b, c], a · b = a · b.

I However... a kernel of a truss homomorphism is not
necessarily an ideal.
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Trusses and ring theory: ideals, quotients, paragons

A (left, right) paragon in A is a sub-herd P such that, for all
p,q ∈ P and a ∈ A,

[ap,aq,q], [pa,qa,q] ∈ P.

I Kernel is a paragon.
I A/P is a truss.
I For example, the set of odd integers is a paragon in Z.
I In case of braces: paragon is what is called an ideal.



Modules of trusses
I A left module over a truss (A, [−,−,−], ·) is an abelian herd

(M, [−,−,−]) together with a morphism of trusses

πM : A→ E(M).

I The action of A on M, a .m := πM(a)(m), satisfies:
Distributive laws:

a .[m1,m2,m3] = [a .m1,a .m2,a .m3],

[a,b, c] .m = [a .m,b .m, c .m],

Associative law:
a .(b .m) = (a · b) .m.



Category of modules

I Morphisms of modules over trusses are defined as
functions preserving the ternary operations and actions;
category A−Mod.

I Right modules, bimodules defined analogously.
I A−Mod has a terminal object T = {0} but not an initial

object.
I A−Mod has cokernels, i.e. pushouts of

M

~~

f

  
T N.



Category of modules

I A−Mod has quotients:
I Take a submodule N of M.
I Define an equivalence relation, for m1,m2 ∈ M,

m1 ∼N m2 iff ∃n ∈ N, [m1,m2,n] ∈ N.

I M := M/N := M/ ∼N ,

[m1,m2,m3] = [m1,m2,m3], a .m = a .m.

I Given a morphism of A-modules f : M → N,

coker(f ) = N/Im(f).



Induced submodules

Many constructions of modules over rings can be applied to
trusses but not necessarily in a straightforward way.

I An A-module M an induced action: fix e ∈ M,

a .em = [a .m,a .e,e].

I The element e is an absorber for .e, i.e.

∀a ∈ A, a .ee = e,

hence .e distributes over the binary operation �e on M.
I Different choices of e yield isomorphic modules.
I The kernel of f : M → N is an induced submodule of M.
I If N is a sub-herd of M, then M/N has an A-module

structure such that M → M/N is a module morphism if and
only if N is an induced submodule of M.
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Endomorphism and matrix trusses
I For any A-module M,

EndA(M)

is a truss in the same way as endomorphisms of an
abelian herd.

I An is an A-module: for all a = (ai),b = (bi), c = (ci) ∈ An,
x ∈ A,

[a,b, c]i = [ai ,bi , ci ], (x .a)i = x .ai .

I Mn(A) := EndA(An) is a (matrix) truss.
I EndA(An) satisfy a brace-type distributive law between �id

and ◦.


